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ABSTRACT 

 

The main objective of present study is to establish the relationship between positional 

fatty acids in triacylglycerols and obesity. The inferences drawn from the in vivo studies 

have been used in the design of prospective structured lipids to reduce obesity risk. In 

the effort to evaluate the effect of positional fatty acids on obesity, an accurate and 

precise analytical method to analyse positional distribution of fatty acids within the 

glycerol moiety is an important prerequisite. An elegant, user-friendly and accurate 

analytical method using quantitative 
13

C NMR spectroscopy (qCNMR) has been fully 

established in the present study. A regiospecific analysis data using qCNMR was 

attainable within 44 minutes, much shorter relative to the conventional methods which 

use a combination of chromatographic techniques. Besides, the current method provides 

quantitative results with high accuracy by virtue of direct measurement and negligible 

sample preparation prior to the analysis. Occurrence of acyl migration during the course 

of sample pre-treatment is omitted. The applicability as well as the versatility of the 

present method had been accessed in various oils and fats, reaction intermediates of 

chemical interesterification and extracted lipids from biological samples with systematic 

errors were less than 2.0 mol%. As a summary, a cookbook approach for qCNMR in the 

regiospecific analysis of oils and fats from diverse sources has been established. 

 

Correlation between the positional fatty acids within glycerol moiety and the accretion 

of fat was investigated in two in vivo studies using C57BL/6 mouse model. The 

positional distribution of saturated fatty acid (SFA) was found to exert a more 

pronounced effect on body fat deposition than the total SFA content. The extent of fat 

deposition will be lessened in the event of long chain SFA (C16:0 and above) occur 

predominantly at the sn-1,3 positions of triacylglycerols. Among the different chain 
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length of SFA, stearic acid (C18:0) was found to be more efficient in reducing fat 

deposition than palmitic acid (C16:0) at the similar positions. It is postulated that after 

the action of 1,3-specific pancreatic lipase, non-esterified SFA will suffer delayed 

absorption and being excreted in the faeces due to the formation of insoluble calcium 

soaps. Consequently, the resynthesis of triacylglycerols in chylomicron and eventually 

their deposition in adipose tissues will be reduced. 

 

In accordance with the findings from both in vivo studies, structured lipid which aims to 

alleviate the risk of obesity has been designed. An even longer SFA, namely behenic 

acid (C22:0), was incorporated into the sn-1,3 positions of triacylglycerols in palm olein 

iodine value (IV) 56 and high-oleic sunflower oil. To achieve sustainable chemistry, 

immobilised lipases from the strain of Rhizomucor miehei (Lipozyme RM IM, 

Novozymes
TM

) and Thermomyces lanuginosa (Lipozyme TL IM, Novozymes
TM

) were 

employed in the current synthesis work. The synthesized structured lipids which contain 

high amount of BOO and BOB molecular species may serve potential applications in 

functional dietary fats, for instance, bakery shortening, trans-fat-free margarine, 

vanaspati and cocoa butter equivalent, with the additional health benefit in terms of 

giving lower risk towards the body fat deposition. 
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ABSTRAK 

 

Objektif utama kajian ini adalah untuk menentukan hubungan antara kedudukan asid 

lemak dalam triasilgliserol dengan obesiti. Kesimpulan yang didapati daripada kajian in 

vivo telah digunakan dalam reka bentuk dan sintesis lipid berstruktur yang bertujuan 

untuk mengurangkan risiko obesiti. Dalam usaha mengkaji kesan kedudukan asid lemak 

dalam obesiti, satu kaedah analisa yang tepat adalah penting untuk menganalisa 

komposisi asid lemak pada kedudukan yang berbeza dalam triasilgliserol. Satu kaedah 

analisa yang elegan, mudah dan tepat telah dioptimakan sepenuhnya dengan 

menggunakan kuantitatif spektroskopi 
13

C NMR (qCNMR). Data analisa regiospesifik 

dapat diperoleh dalam 44 minit dengan menggunakan qCNMR. Ini memerlukan masa 

yang lebih pendek daripada kaedah konvensional yang menggabungkan teknik-teknik 

kromatografi. Selain itu, kaedah ini memberi keputusan kuantitatif yang lebih tepat 

kerana penyediaan sampel tidak diperlukan sebelum analisa. Fenomena pemindahan asil 

semasa penyediaan sampel dapat dielakkan. Kesesuaian serta keserbabolehan kaedah ini 

telah diuji dalam pelbagai jenis minyak dan lemak, antaranya produk interesterifikasi 

kimia dan ekstrak lipid daripada sampel biologi dengan ralat sistematik yang kurang 

daripada 2.0 mol%. Kesimpulannya, protokol qCNMR dalam analisa regiospesifik 

minyak dan lemak telah dioptimumkan. 

 

Hubungan antara kedudukan asid lemak dalam triasilgliserol dan pemendapan lemak 

badan telah dikaji dalam dua kajian in vivo yang menggunakan model tikus C57BL/6. 

Kedudukan asid lemak tepu (SFA) didapati memberi kesan yang lebih ketara atas 

penyerapan lemak badan jika dibandingkan dengan kandungan SFA keseluruhan. 

Penyerapan lemak badan dapat dikurangkan sekiranya kebanyakan SFA berantai 

panjang (C16:0 dan ke atas) berada di kedudukan sn-1,3 dalam triasilgliserol. Antara 
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panjang rantai SFA yang berbeza, asid stearik (C18:0) didapati lebih berkesan dalam 

mengurangkan penyerapan lemak daripada asid palmitik (C16:0) pada kedudukan yang 

sama. Ini adalah kerana selepas tindakan pankreas lipase yang bertindak khusus pada 

kedudukan sn-1,3, SFA yang bebas akan mengalami penangguhan dalam penyerapan 

dan akhirnya akan dikeluarkan dalam najis sebab pembentukan sabun kalsium tidak 

terlarut. Oleh itu, resynthesis triasilgliserol di chylomicron dan akhirnya penyerapan 

lemak dalam tisu-tisu adipos akan dikurangkan. 

 

Selaras dengan penemuan dari kedua-dua kajian in vivo, lipid berstruktur yang bertujuan 

untuk mengurangkan risiko obesiti telah direka dan disintesis. Rantai SFA yang lagi 

panjang, iaitu asid behenik (C22:0), telah digabungkan pada kedudukan sn-1,3 dalam 

triasilgliserol yang diperolehi daripada olein sawit bernilai iodin (IV) 56 dan minyak 

bunga matahari yang beroleik tinggi. Untuk mencapai kemampanan, lipases semulajadi 

Rhizomucor miehei (Lipozyme RM IM, Novozymes
TM

) dan Thermomyces lanuginosa 

(Lipozyme TL IM, Novozymes
TM

) telah digunakan dalam kerja-kerja sintesis. Lipid 

berstruktur yang disintesiskan mengandungi komposisi BOO dan BOB spesies yang 

tinggi. Ini membolehkan aplikasi-aplikasi dalam pemakanan lemak berfungsi, sebagai 

contoh, roti lemak sayuran, marjerin yang bebas dari trans-asid lemak, vanaspati dan 

kesamaan lemak koko, dengan manfaat kesihatan dari segi memberi risiko yang lebih 

rendah terhadap penyerapan lemak badan. 
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